skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vilhuber, Lars"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Transparent Research Object Vocabulary (TROV) is a key element of the Transparency Certified (TRACE) approach to ensuring research trustworthiness. In contrast with methods that entail repeating computations in part or in full to verify that the descriptions of methods included in a publication are sufficient to reproduce reported results, the TRACE approach depends on a controlled computing environment termed a Transparent Research System (TRS) to guarantee that accurate, sufficiently complete, and otherwise trustworthy records are captured when results are obtained in the first place. Records identifying (1) the digital artifacts and computations that yielded a research result, (2) the TRS that witnessed the artifacts and supervised the computations, and (3) the specific conditions enforced by the TRS that warrant trust in these records, together constitute a Transparent Research Object (TRO). Digital signatures provided by the TRS and by a trusted third-party timestamp authority (TSA) guarantee the integrity and authenticity of the TRO. The controlled vocabulary TROV provides means to declare and query the properties of a TRO, to enumerate the dimensions of trustworthiness the TRS asserts for a TRO, and to verify that each such assertion is warranted by the documented capabilities of the TRS. Our approach for describing, publishing, and working with TROs imposes no restrictions on how computational artifacts are packaged or otherwise shared, and aims to be interoperable with, rather than to replace, current and future Research Object standards, archival formats, and repository layouts. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  2. Abstract Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors:www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide:https://doi.org/10.31219/osf.io/hstcx). 
    more » « less
  3. When Google or the US Census Bureau publishes detailed statistics on browsing habits or neighborhood characteristics, some privacy is lost for everybody while supplying public information. To date, economists have not focused on the privacy loss inherent in data publication. In their stead, these issues have been advanced almost exclusively by computer scientists who are primarily interested in technical problems associated with protecting privacy. Economists should join the discussion, first to determine where to balance privacy protection against data quality--a social choice problem. Furthermore, economists must ensure new privacy models preserve the validity of public data for economic research. 
    more » « less